Atmospheric Chemistry and Physics (Mar 2023)

Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework

  • M. W. Christensen,
  • P.-L. Ma,
  • P. Wu,
  • A. C. Varble,
  • J. Mülmenstädt,
  • J. D. Fast

DOI
https://doi.org/10.5194/acp-23-2789-2023
Journal volume & issue
Vol. 23
pp. 2789 – 2812

Abstract

Read online

A Lagrangian framework is used to evaluate aerosol–cloud interactions in the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) version 1 (E3SMv1) for measurements taken at Graciosa Island in the Azores where a U.S. Department of Energy Atmosphere Radiation Measurement (ARM) site is located. This framework uses direct measurements of cloud condensation nuclei (CCN) concentration (instead of relying on satellite retrievals of aerosol optical depth) and incorporates a suite of ground-based ARM measurements, satellite retrievals, and meteorological reanalysis products that when applied to over a 1500 trajectories provides key insights into the evolution of low-level clouds and aerosol radiative forcing that is not feasible from a traditional Eulerian analysis framework. Significantly lower concentrations (40 %) of surface CCN concentration are measured when precipitation rates in 48 h back trajectories average above 1.2 mm d−1 in the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) product. The depletion of CCN concentration when precipitation rates are elevated is nearly twice as large in the ARM observations compared to E3SMv1 simulations. The model CCN concentration bias remains significant despite modifying the autoconversion and accretion rates in warm clouds. As the clouds in trajectories associated with larger surface-based CCN concentration advect away from Graciosa Island, they maintain higher values of droplet number concentrations (Nd) over multiple days in observations and E3SM simulations compared to trajectories that start with lower CCN concentrations. The response remains robust even after controlling for meteorological factors such as lower troposphere stability, the degree of cloud coupling with the surface, and island wake effects. E3SMv1 simulates a multi-day aerosol effect on clouds and a Twomey radiative effect that is within 30 % of the ARM and satellite observations. However, the mean cloud droplet concentration is more than 2–3 times larger than in the observations. While Twomey radiative effects are similar amongst autoconversion and accretion sensitivity experiments, the liquid water path and cloud fraction adjustments are positive when using a regression model as opposed to negative when using the present-day minus pre-industrial aerosol emissions approach. This result suggests that tuning the autoconversion and accretion alone is unlikely to produce the desired aerosol susceptibilities in E3SMv1.