International Journal of Molecular Sciences (Sep 2021)

Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders

  • Takuma Kumamoto,
  • Tomokazu Tsurugizawa

DOI
https://doi.org/10.3390/ijms221910312
Journal volume & issue
Vol. 22, no. 19
p. 10312

Abstract

Read online

Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood–brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander’s disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.

Keywords