Scientific Reports (Aug 2018)

Low temperature a/b nanotwins in Ni50Mn25+x Ga25−x Heusler alloys

  • L. Straka,
  • J. Drahokoupil,
  • P. Veřtát,
  • M. Zelený,
  • J. Kopeček,
  • A. Sozinov,
  • O. Heczko

DOI
https://doi.org/10.1038/s41598-018-30388-8
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 11

Abstract

Read online

Abstract We have found low temperature a/b nanotwins having (110) twinning plane in a five-layered modulated martensite phase of Ni50Mn25+x Ga25−x (at. %) Heusler alloys and identified the particular region in phase diagram where the nanotwinning occurs. Evolution of the structure with decreasing temperature was studied by X-ray diffraction using single crystals exhibiting magnetic shape memory effect. The merging of (400) and (040) lines upon cooling for 2.6 < x < 3.5 indicated a/b nanotwinning originating from the refinement of initially coarse a/b twins. Refinement of the twins with decreasing temperature was observed directly using scanning electron microscopy. The prerequisite for nanotwinning is an extremely low twin boundary energy, which we estimated using first-principles calculations to be 0.16 meV/Å2. As the nanotwinning distorts the relation between the crystal lattice and the X-ray diffraction pattern, it should be taken into consideration in structural studies of Ni-Mn-Ga Heusler alloys.