eLife (Oct 2023)

RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy

  • Julie C Necarsulmer,
  • Jeremy M Simon,
  • Baggio A Evangelista,
  • Youjun Chen,
  • Xu Tian,
  • Sara Nafees,
  • Ariana B Marquez,
  • Huijun Jiang,
  • Ping Wang,
  • Deepa Ajit,
  • Viktoriya D Nikolova,
  • Kathryn M Harper,
  • J Ashley Ezzell,
  • Feng-Chang Lin,
  • Adriana S Beltran,
  • Sheryl S Moy,
  • Todd J Cohen

DOI
https://doi.org/10.7554/eLife.85921
Journal volume & issue
Vol. 12

Abstract

Read online

TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.

Keywords