Materials (Mar 2023)

A Methodology for Predicting the Phase Fraction and Microhardness of Welded Joints Using Integrated Models

  • Ji-Hyo Song,
  • Kyung-Woo Yi

DOI
https://doi.org/10.3390/ma16072599
Journal volume & issue
Vol. 16, no. 7
p. 2599

Abstract

Read online

Understanding the phase transformation and fraction affected by thermal changes is imperative for ensuring the safety of a welded joint. This study proposes a methodology for predicting the phase transformation and fraction of a welded joint using an integrated model. The integrated model includes a heat transfer model and procedures for predicting phase fraction and microhardness. The heat transfer model was developed to simulate the heat transfer in a welded joint and obtain the thermal cycles. The procedure consists of obtaining the peak temperature, austenite fraction, prior austenite grain size (PAGS), and t8/5 (the cooling time between 800 and 500 °C). A database was constructed based on the continuous cooling transformation (CCT) diagram using PAGS and t8/5 as the variables. The phase fraction was then predicted by considering the PAGS with t8/5 from the database. The predicted phase fraction and microhardness were in good agreement with those determined experimentally, demonstrating the reliability of the methodology. This methodology provides a more realistic understanding of phase transformation and facilitates the prediction of the phase fraction and microhardness under various welding conditions that have experimental limitations.

Keywords