Data in Brief (Dec 2018)
Soil data for mapping paludification in black spruce forests of eastern Canada
Abstract
Soil data and soil mapping are indispensable tools in sustainable forest management. In northern boreal ecosystems, paludification is defined as the accumulation of partially decomposed organic matter over saturated mineral soils, a process that reduces tree regeneration and forest growth. Given this negative effect on forest productivity, spatial prediction of paludification in black spruce stands is important in forest management. This paper provides a description of the soil database to predict organic layer thickness (OLT) as a proxy of paludification in northeastern Canada. The database contains 13,944 OLT measurements (in cm) and their respective GPS coordinates. We collected OLT measurements from georeferenced ground plots and transects from several previous projects. Despite the variety of sources, the sampling design for each dataset was similar, consisting of manual measurements of OLT with a hand probe. OLT measurements were variable across the study area, with a mean ± standard deviation of 21 ± 24 cm (ranging from a minimum of 0 cm to a maximum of 150 cm), and the distribution tended toward positive skewing, with a large number of low OLT values and fewer high OLT values. The dataset has been used to perform OLT mapping at 30-m resolution and predict the risk of paludification in northeastern Canada (Mansuy et al., 2018) [1]. The spatially explicit and continuous database is also available to support national and international efforts in digital soil mapping.