Atmospheric Chemistry and Physics (May 2010)
Patterns of mercury dispersion from local and regional emission sources, rural Central Wisconsin, USA
Abstract
Simultaneous real-time changes in mercury (Hg) speciation- reactive gaseous Hg (RGM), elemental Hg (Hg°), and fine particulate Hg (Hg-PM<sub>2.5</sub>), were determined from June to November, 2007, in ambient air at three locations in rural Central Wisconsin. Known Hg emission sources within the airshed of the monitoring sites include: 1) a 1114 megawatt (MW) coal-fired electric utility generating station; 2) a Hg-bed chlor-alkali plant; and 3) a smaller (465 MW) coal-burning electric utility. Monitoring sites, showing sporadic elevation of Hg°, Hg-PM<sub>2.5</sub>, and RGM were positioned at distances of 25, 50 and 100 km northward of the larger electric utility. Median concentrations of Hg°, Hg-PM<sub>2.5</sub>, and RGM were 1.3–1.4 ng m<sup>−3</sup>, 2.6–5.0 pg m<sup>−3</sup>, and 0.6–0.8 pg m<sup>−3</sup>, respectively. A series of RGM events were recorded at each site. The largest, on 23 September, occurred under prevailing southerly winds, with a maximum RGM value (56.8 pg m<sup>-3</sup>) measured at the 100 km site, and corresponding elevated SO<sub>2</sub> (10.4 ppbv; measured at 50 km site). The finding that RGM, Hg°, and Hg-PM<sub>2.5</sub> are not always highest at the 25 km site, closest to the large generating station, contradicts the idea that RGM decreases with distance from a large point source. This may be explained if: 1) the 100 km site was influenced by emissions from the chlor-alkali facility or by RGM from regional urban sources; 2) the emission stack height of the larger power plant promoted plume transport at an elevation where the Hg is carried over the closest site; or 3) RGM was being generated in the plume through oxidation of Hg°. Operational changes at each emitter since 2007 should reduce their Hg output, potentially allowing quantification of the environmental benefit in future studies.