Ultrasonics Sonochemistry (Nov 2024)
Effects of ultrasonic waves of different powers on the physicochemical properties, functional characteristics, and ultrastructure of bovine liver peptides
Abstract
In recent years, ultrasound has emerged as a widely used technology for modifying proteins/peptides. In this study, we focused on the intrinsic mechanism of ultrasound-induced modification of bovine liver peptides, which were treated with ultrasound power of 0, 100, 200, 300, 400, and 500 W, and their physicochemical and functional properties, as well as ultrastructures, were investigated. The results show that ultrasound mainly affects hydrogen bonding and hydrophobic interactions to change the conformation of proteins and unfolds proteins through a cavitation effect, leading to an increase in biological activity. Fourier infrared spectroscopy showed that ultrasound inhibited the formation of hydrogen bonds and reduced intermolecular cross-linking. Molecular weight distribution showed that the antioxidant components of bovine liver polypeptides were mainly concentrated in fractions of 500–1,000 Da. Maximum values of ABTS (82.66 %), DPPH (76.02 %), chelated iron (62.18 %), and reducing power (1.2447) were obtained by treating bovine liver polypeptides with 500 W ultrasound. Combined with the scanning electron microscopy results, with the intervention of ultrasound, the impact force generated by ultrasonication may lead to the loosening of the protein structure, which further promotes the release of antioxidant peptides, and these findings provide new insights into the application of ultrasound in the release of antioxidant peptides from bovine liver.