Agronomy (Jun 2017)

Mid-Season Leaf Glutamine Predicts End-Season Maize Grain Yield and Nitrogen Content in Response to Nitrogen Fertilization under Field Conditions

  • Travis Goron,
  • Jacob Nederend,
  • Greg Stewart,
  • Bill Deen,
  • Manish Raizada

DOI
https://doi.org/10.3390/agronomy7020041
Journal volume & issue
Vol. 7, no. 2
p. 41

Abstract

Read online

After uptake in cereal crops, nitrogen (N) is rapidly assimilated into glutamine (Gln) and other amino acids for transport to sinks. Therefore Gln has potential as an improved indicator of soil N availability compared to plant N demand. Gln has primarily been assayed to understand basic plant physiology, rather than to measure plant/soil-N under field conditions. It was hypothesized that leaf Gln at early-to-mid season could report the N application rate and predict end-season grain yield in field-grown maize. A three-year maize field experiment was conducted with N application rates ranging from 30 to 218 kg ha−1. Relative leaf Gln was assayed from leaf disk tissue using a whole-cell biosensor for Gln (GlnLux) at the V3-V14 growth stages. SPAD (Soil Plant Analysis Development) and NDVI (Normalized Difference Vegetation Index) measurements were also performed. When sampled at V6 or later, GlnLux glutamine output consistently correlated with the N application rate, end-season yield, and grain N content. Yield correlation outperformed GreenSeekerTM NDVI, and was equivalent to SPAD chlorophyll, indicating the potential for yield prediction. Additionally, depleting soil N via overplanting increased GlnLux resolution to the earlier V5 stage. The results of the study are discussed in the context of luxury N consumption, leaf N remobilization, senescence, and grain fill. The potential and challenges of leaf Gln and GlnLux for the study of crop N physiology, and future N management are also discussed.

Keywords