Biofilm (Jun 2024)
Silver nanoparticles synthesized from Pseudomonas aeruginosa pyoverdine: Antibiofilm and antivirulence agents
Abstract
The increasing incidence of antimicrobial resistance exhibited by biofilm-forming microbial pathogens has been recognized as one of the major issues in the healthcare sector. In the present study, nanomaterial-based controlling the biofilm and virulence properties has been considered an alternative approach. Pyoverdine (PVD) isolated from the Pseudomonas aeruginosa was utilized as a biological corona to synthesize silver nanoparticles (AgNPs), which will be helpful in a targeted action to microbial pathogens due to the recognition of the corona of the nanoparticles by the pathogenic membrane. Synthesized PVD-AgNPs were spherical to irregular, with an average size value of 251.87 ± 21.8 nm and zeta potential with a value of −36.51 ± 0.69 mV. The MIC value of PVD-AgNPs towards P. aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in the standard and host-mimicking media were observed in decreasing order in a multi-fold, such as standard growth media > sputum > synthetic human urine > saliva. Both the initial stage and the well-established biofilms of these microbial pathogens have been effectively inhibited and eradicated by PVD-AgNPs. PVD-AgNPs increase the susceptibility of tetracycline, PVD, and amphotericin B towards established mature mono- and mixed-species biofilms of S. aureus and C. albicans. Additionally, PVD-AgNPs attenuate several virulence properties, such as inhibition of protease activity, motility, and PVD and pyocyanin production in P. aeruginosa. The inhibition of gene expression of biofilm and virulence-associated genes in P. aeruginosa validates its phenotypic effects.