Heliyon (Aug 2018)
Plant growth, phytochemical accumulation and antioxidant activity of substrate-grown spinach
Abstract
Spinach production in soilless cultivation systems, mainly in substrate, transplanted with soil blocks and drip-irrigation is increasing worldwide. However, spinach establishment with soil blocks, with several seedlings per block compared with traditional planting methods, may affect light interception by plant canopy, wetting and salt patterns in root medium and therefore the plant growth and functional value of spinach. The effects of soil block number (plant density) and emitters spacing on plant growth, nitrate, proline and total phenols content and antioxidant activity were evaluated in spinach (Spinacia oleracea L). Five seedlings per soil block were transplanted to Styrofoam boxes filled with the substrate and grown during winter in an unheated greenhouse. Four treatments were carried out with two soil block numbers [8 (160 plants/m2) and 14 (280 plants/m2) soil blocks per Styrofoam box] and two emitter spacing [emitters spaced every 25 and 12.5 cm, respectively, with 4 and 8 emitters per Styrofoam box]. Neither plant density nor emitter spacing had any effect on shoot dry weight. Fresh yield increased as planting density and the number of emitters per Styrofoam box increased. The yield in Styrofoam boxes with 160 plants/m2 and 8 emitters (3.85 kg m−2) was ≈31 % lower than that obtained in treatment with 280 plants/m2 and 8 emitters (5.09 kg m−2). However, the leaf blade of the latter treatment presented a higher content of phenols and proline and greater antioxidant activity (FRAP and DPPH) as well as lower content of nitrate and lesser PDH activity. Decrease of space between emitters reduced the leaf blade nitrate concentration of spinach grown in a greenhouse during the winter. Leaf blade antioxidant activity (FRAP) decreased as planting density increased.