Heliyon (Jul 2020)
Accuracy of spiked cell counting methods for designing a pre-clinical tumorigenicity study model
Abstract
Background: Evaluations for the tumorigenicity of transplantation of stem cell products is mandatory for clinical application. It is of importance to establish a system to accurately quantify contaminated tumorigenic cells regardless of the format of stem cell product. In the present report, we aimed to examine the accuracy of the quantification of tumorigenic cell numbers with commonly used 2 methods, quantitative polymerase chain reaction (qPCR) and flow cytometry (FCM) using experimental models of stem cell products spiked with tumorigenic cells. Methods: Human mesenchymal stem cells (hMSCs) and melanoma Mewo-Luc cells constitutively expressing luciferase were used. We stained Mewo-Luc cells with a cell linker then spiked onto hMSC suspensions and hMSC sheets. We validated the accuracy of 10-fold serial dilution technique for Mewo-Luc cell suspension using a Coulter counter. The samples spiked with Mewo-Luc cells were subjected to qPCR and FCM analyses, respectively for the quantification of Mewo-Luc cells. Results: Ten-fold serial dilutions of Mewo-Luc cells were performed accurately with small deviation. In samples spiked with or less than 100 cells in hMSC suspensions, and samples spiked with or less than 1,000 cells in hMSC sheets showed significantly higher cell numbers in calculations by FCM, respectively (suspensions; qPCR vs FCM: 100 cells: 59 ± 25 vs 232 ± 35 cells, p = 0.022/10 cells: 21 ± 7 vs 114 ± 27 cells, p = 0.030, sheets; qPCR vs FCM: 1,000 cells: 1723 ± 258 vs 5810 ± 878 cells, p = 0.012/100 cells: 110 ± 18 vs 973 ± 232 cells, p = 0.012/10 cells: 20 ± 6 vs 141 ± 36 cells, p = 0.030). Conclusion: Differences in accuracy between quantification methods should be considered in designing a tumorigenicity study model.