Frontiers in Immunology (Mar 2023)

Model-interpreted outcomes of artificial neural networks classifying immune biomarkers associated with severe infections in ICU

  • Gustavo Sganzerla Martinez,
  • Gustavo Sganzerla Martinez,
  • Ali Toloue Ostadgavahi,
  • Ali Toloue Ostadgavahi,
  • Abdullah Mahmud Al-Rafat,
  • Abdullah Mahmud Al-Rafat,
  • Alexis Garduno,
  • Rachael Cusack,
  • Jesus Francisco Bermejo-Martin,
  • Jesus Francisco Bermejo-Martin,
  • Jesus Francisco Bermejo-Martin,
  • Ignacio Martin-Loeches,
  • David Kelvin,
  • David Kelvin

DOI
https://doi.org/10.3389/fimmu.2023.1137850
Journal volume & issue
Vol. 14

Abstract

Read online

IntroductionMillions of deaths worldwide are a result of sepsis (viral and bacterial) and septic shock syndromes which originate from microbial infections and cause a dysregulated host immune response. These diseases share both clinical and immunological patterns that involve a plethora of biomarkers that can be quantified and used to explain the severity level of the disease. Therefore, we hypothesize that the severity of sepsis and septic shock in patients is a function of the concentration of biomarkers of patients.MethodsIn our work, we quantified data from 30 biomarkers with direct immune function. We used distinct Feature Selection algorithms to isolate biomarkers to be fed into machine learning algorithms, whose mapping of the decision process would allow us to propose an early diagnostic tool.ResultsWe isolated two biomarkers, i.e., Programmed Death Ligand-1 and Myeloperoxidase, that were flagged by the interpretation of an Artificial Neural Network. The upregulation of both biomarkers was indicated as contributing to increase the severity level in sepsis (viral and bacterial induced) and septic shock patients.DiscussionIn conclusion, we built a function considering biomarker concentrations to explain severity among sepsis, sepsis COVID, and septic shock patients. The rules of this function include biomarkers with known medical, biological, and immunological activity, favoring the development of an early diagnosis system based in knowledge extracted from artificial intelligence.

Keywords