Dyna (May 2021)

First-principles calculations of structural and electronics properties of YInN alloy

  • Gladys Patricia Abdel Rahim Garzón,
  • Jairo Arbey Rodriguez Martinez,
  • María Guadalupe Moreno Armenta,
  • Miguel Espitia Rico

DOI
https://doi.org/10.15446/dyna.v88n217.88374
Journal volume & issue
Vol. 88, no. 217

Abstract

Read online

We study the structural and electronic properties of YxIn1-xN in the concentrations x = 0, ¼, ½, ¾, and 1 in the B1, B2, B3 and B4 structures using density functional theory (DFT). The calculations show that for Y0.75In0.25N, the B1 structure is the most favorable energetically. It was determined that between in the supercell, the most energetically stable structure is the B3 phase. Additionally, between concentrations x of Yttrium, the compound is most energetically favorable in the B4 phase. Technical data that are in agreement were recently reported by other authors. Finally, between 0.12 , the most stable phase is B1. Additionally, there is no phase transition between the four structures considered. The DOS and band structure show that Y0.75In0.25N in the B1 and B3 phases exhibits semiconductor behavior, with a direct gap of ~0.6 eV and ~0.7 eV, respectively while Y0.75In0.25N in the B4 phase has an indirect one of ~0.8 eV.

Keywords