Neurobiology of Disease (Aug 2006)

Anti-inflammatory treatment in oxygen–glucose-deprived hippocampal slice cultures is neuroprotective and associated with reduced cell proliferation and intact neurogenesis

  • Olga Chechneva,
  • Klaus Dinkel,
  • Fabio Cavaliere,
  • Monica Martinez-Sanchez,
  • Klaus G. Reymann

Journal volume & issue
Vol. 23, no. 2
pp. 247 – 259

Abstract

Read online

Increased neurogenesis in response to brain injury is considered a mechanism of regeneration after neuronal loss. Using organotypic hippocampal cultures (OHC), we investigated the interplay between neuronal damage (propidium iodide uptake), microglia activation (OX-42 immunohistochemistry), cell proliferation (bromodeoxyuridine incorporation), and neurogenesis (double labeling of bromodeoxyuridine with doublecortin or β-III tubulin) after oxygen–glucose deprivation (OGD). We observed that microglia activation and upregulation of pro-inflammatory cytokines mRNA preceded neuronal loss and was followed by increased cell proliferation. Neurogenesis was inhibited 3 days after OGD in both neurogenic zones of the slice, the dentate gyrus and the posterior periventricle (pPV). After 6 days, neurogenesis was restored and significantly increased in the pPV. Indomethacin or minocycline reduced the OGD-induced damage, proliferation, and increase of microglia. Both agents did not interfere with OGD-induced pPV neurogenesis. Our study shows for the first time that neuroprotection against OGD-induced damage in OHC by anti-inflammatory treatment is associated with intact neurogenesis.

Keywords