Buildings (Oct 2024)

Multi-Source Monitoring and Numerical Simulation Deformation on Highway Steep Slopes Under Rainfall Effects

  • Peijun Li,
  • Qing Li,
  • Qingshan Feng,
  • Zhendong Huang,
  • Xun Gan,
  • Haibin Ding,
  • Changjie Xu

DOI
https://doi.org/10.3390/buildings14113473
Journal volume & issue
Vol. 14, no. 11
p. 3473

Abstract

Read online

Rainfall is one of the most important factors affecting slope stability. This study employed multi-source monitoring devices to observe the slope displacements in real time under rainfall infiltration and performed numerical simulations to investigate the effects of different rainfall conditions and anti-slip pile configurations on slope stability. Specifically, multi-source monitoring operations were conducted on the high and steep slopes along the Yunmao Expressway. Real-time data on slope deformation, rainfall, and displacement at the tops of anti-slip piles were collected and analyzed, and numerical simulations were conducted using Geo Studio finite-element software. The findings indicated that abrupt deformation of slopes occurs once a threshold rainfall amount is surpassed and sustained over a specific duration. Slope displacement decreased with increasing slope depth above the potential slip fracture surface, with a more rapid reduction in deformation rates observed in slopes reinforced with anti-slip piles. For equivalent rainfall amounts, short-duration, intense rainfalls led to a rapid decrease in the slope safety factor, which also recovered rapidly once the rainfall ceased, in contrast to long-duration, mild rainfalls. The presence and location of anti-slip piles significantly influenced slope stability; therefore, project implementation should carefully consider factors such as cost and duration for optimal decision making.

Keywords