Environmental and Climate Technologies (Jan 2021)
Impact of Grid Gas Requirements on Hydrogen Blending Levels
Abstract
The aim of the article is to determine what amount of hydrogen in %mol can be transferred/stored in the Estonian, Latvian and Lithuanian grid gas networks, based on the limitations of chemical and physical requirements, technical requirements of the gas network, and quality requirements. The main characteristics for the analysis of mixtures of hydrogen and natural gas are the Wobbe Index, relative density, methane number, and calorific value. The calculation of the effects of hydrogen blending on the above main characteristics of a real grid gas is based on the principles described in ISO 6976:2016 and the distribution of the grid gas mole fraction components from the grid gas quality reports. The Wärtsila methane number calculator was used to illustrate the effects of hydrogen blending on the methane number of the grid gas. The calculation results show that the maximum hydrogen content in the grid gas (hydrogen and natural gas mix), depending on the grid gas quality parameters (methane number, gross heat of combustion, specific gravity, and the Wobbe Index), is in the range of 5–23 %mol H2. The minimum hydrogen content (5 %mol H2) is limited by specific gravity (>0.55). The next limitation is at 12 %mol H2 and is related to the gross heat of combustion (>9.69 kWh/m3). It is advisable to explore the readiness of gas grids and consumers in Estonia, Latvia and Lithuania before switching to higher hydrogen blend levels. If the applicability and safety of hydrogen blends above 5 %mol is approved, then it is necessary to analyse the possible reduction of the minimum requirements for the quality of the grid gas and evaluate the associated risks (primarily related to specific gravity).
Keywords