Forum of Mathematics, Pi (Jan 2021)

On the derivation of the wave kinetic equation for NLS

  • Yu Deng,
  • Zaher Hani

DOI
https://doi.org/10.1017/fmp.2021.6
Journal volume & issue
Vol. 9

Abstract

Read online

A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $T_{\mathrm {kin}} \gg 1$ and in a limiting regime where the size L of the domain goes to infinity and the strength $\alpha $ of the nonlinearity goes to $0$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$ and $\alpha $ is related to the conserved mass $\lambda $ of the solution via $\alpha =\lambda ^2 L^{-d}$ .

Keywords