Forests (Dec 2014)

Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA

  • R. Justin DeRose,
  • A. Joshua Leffler

DOI
https://doi.org/10.3390/f5123241
Journal volume & issue
Vol. 5, no. 12
pp. 3241 – 3256

Abstract

Read online

Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and Fuels Extension. The wind speeds necessary for crowning (crown-to-crown fire spread) and torching (surface to crown fire spread) were evaluated to test the hypothesis that predicted fire behavior is influenced by the proportion of aspen in the stand. Results showed a strong effect of species composition on crowning, but only under moderate fire weather, where aspen-dominated stands were unlikely to crown or torch. Although rarely observed in actual fires, conifer-dominated stands were likely to crown but not to torch, an example of “hysteresis” in crown fire behavior. Results support the hypothesis that potential crown fire behavior varies across a gradient of aspen dominance and fire weather, where it was likely under extreme and severe fire weather, and unlikely under moderate and high fire weather. Furthermore, the “fire-proof” nature of aspen stands broke down across the gradient of aspen dominance and fire weather.

Keywords