Remote Sensing (Aug 2024)
Polarimetric Adaptive Coherent Detection in Lognorm-Texture-Distributed Sea Clutter
Abstract
This paper addresses polarimetric adaptive coherent detection of radar targets embedded in sea clutter. Initially, radar clutter data across multiple polarimetric channels is modeled using a compound Gaussian framework featuring an unspecified speckle covariance matrix and lognormal texture distribution. Subsequently, three adaptive polarimetric coherent detectors are derived, employing parameter estimation and two-step versions of the generalized likelihood ratio test (GLRT): the complex parameter Rao and Wald tests. These detectors utilize both clutter texture distribution information and radar data’s polarimetric aspects to enhance detection performance. Simulation experiments demonstrate the superiority of three proposed detectors over the competitors, and that they are sensitive to polarimetric channel parameters such as secondary data quantity, target or clutter speckle correlation, and signal-to-clutter ratio disparity. Additionally, the proposed detectors exhibit a near-constant false alarm rate relative to average clutter power and speckle covariance matrix.
Keywords