iScience (Apr 2024)

AP39 through AMPK-ULK1-FUNDC1 pathway regulates mitophagy, inhibits pyroptosis, and improves doxorubicin-induced myocardial fibrosis

  • Junxiong Zhao,
  • Ting Yang,
  • Jiali Yi,
  • Hongmin Hu,
  • Qi Lai,
  • Liangui Nie,
  • Maojun Liu,
  • Chun Chu,
  • Jun Yang

Journal volume & issue
Vol. 27, no. 4
p. 109321

Abstract

Read online

Summary: Doxorubicin induces myocardial injury and fibrosis. Still, no effective interventions are available. AP39 is an H2S donor that explicitly targets mitochondria. This study investigated whether AP39 could improve doxorubicin-induced myocardial fibrosis. Doxorubicin induced significant myocardial fibrosis while suppressing mitophagy-related proteins and elevating pyroptosis-related proteins. Conversely, AP39 reverses these effects, enhancing mitophagy and inhibiting pyroptosis. In vitro experiments revealed that AP39 inhibited H9c2 cardiomyocyte pyroptosis, improved doxorubicin-induced impairment of mitophagy, reduced ROS levels, ameliorated the mitochondrial membrane potential, and upregulated AMPK-ULK1-FUNDC1 expression. In contrast, AMPK inhibitor (dorsomorphin) and ULK1 inhibitor (SBI-0206965) reversed AP39 antagonism of doxorubicin-induced FUNDC1-mediated impairment of mitophagy and secondary cardiomyocyte pyroptosis. These results suggest that mitochondria-targeted H2S can antagonize doxorubicin-induced pyroptosis and impaired mitophagy in cardiomyocytes via AMPK-ULK1-FUNDC1 and ameliorated myocardial fibrosis and remodeling.

Keywords