Molecules (Sep 2022)
Keratin-Based Composite Bioactive Films and Their Preservative Effects on Cherry Tomato
Abstract
In this study, keratins were extracted from pig nail waste through the reduction method using L-cysteine as a reductant. Curcumin was successively incorporated in a mixed solution including keratin, gelatin, and glycerin to prepare different kinds of keratin/gelatin/glycerin/curcumin composite films. The morphology of the keratin/ gelatin/glycerin/curcumin composite films were examined using scanning electron microscopy. The structures and the molecular interactions between curcumin, keratin, and pectin were examined using Fourier transform infrared spectroscopy and X-ray diffraction, and the thermal properties were determined through thermogravimetric analysis. The tensile strengths of keratin/gelatin/glycerin/curcumin and keratin/gelatin/curcumin composite films are 13.73 and 12.45 MPa, respectively, and their respective elongations at break are 56.7% and 4.6%. In addition, compared with the control group (no film wrapped on the surface of tomato), the ratio of weight loss of the keratin (7.0%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%) experimental groups is 8.76 ± 0.2%, and the hardness value of the tomatoes wrapped with composite films is 11.2 ± 0.39 kg/cm3. Finally, the composite films have a superior antibacterial effect against Staphylococcus aureus and Escherichia coli because of the addition of curcumin. As the concentration of curcumin reaches 1.0%, the antibacterial activity effect of the film is significantly improved. The diameter of the inhibition zone of E. coli is (12.16 ± 0.53) mm, and that of S. aureus is (14.532 ± 0.97) mm. The multifunctional keratin/gelatin/glycerin/curcumin bioactive films have great potential application in the food packaging industry.
Keywords