Sensors (Sep 2018)

A Multi-Sensor Matched Filter Approach to Robust Segmentation of Assisted Gait

  • Satinder Gill,
  • Nitin Seth,
  • Erik Scheme

DOI
https://doi.org/10.3390/s18092970
Journal volume & issue
Vol. 18, no. 9
p. 2970

Abstract

Read online

Individuals with mobility impairments related to age, injury, or disease, often require the help of an assistive device (AD) such as a cane to ambulate, increase safety, and improve overall stability. Instrumenting these devices has been proposed as a non-invasive way to proactively monitor an individual’s reliance on the AD while also obtaining information about behaviors and changes in gait. A critical first step in the analysis of these data, however, is the accurate processing and segmentation of the sensor data to extract relevant gait information. In this paper, we present a highly accurate multi-sensor-based gait segmentation algorithm that is robust to a variety of walking conditions using an AD. A matched filtering approach based on loading information is used in conjunction with an angular rate reversal and peak detection technique, to identify important gait events. The algorithm is tested over a variety of terrains using a hybrid sensorized cane, capable of measuring loading, mobility, and stability information. The reliability and accuracy of the proposed multi-sensor matched filter (MSMF) algorithm is compared with variations of the commonly employed gyroscope peak detection (GPD) algorithm. Results of an experiment with a group of 30 healthy participants walking over various terrains demonstrated the ability of the proposed segmentation algorithm to reliably and accurately segment gait events.

Keywords