Acta Neuropathologica Communications (Oct 2023)

Antisense oligonucleotide-based targeting of Tau-tubulin kinase 1 prevents hippocampal accumulation of phosphorylated tau in PS19 tauopathy mice

  • Kayo Yukawa,
  • Satomi Yamamoto-Mcguire,
  • Louis Cafaro,
  • Christine Hong,
  • Fredrik Kamme,
  • Tsuneya Ikezu,
  • Seiko Ikezu

DOI
https://doi.org/10.1186/s40478-023-01661-3
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Tau tubulin kinase-1 (TTBK1), a neuron-specific tau kinase, is highly expressed in the entorhinal cortex and hippocampal regions, where early tau pathology evolves in Alzheimer’s disease (AD). The protein expression level of TTBK1 is elevated in the cortex brain tissues with AD patients compared to the control subjects. We therefore hypothesized that antisense oligonucleotide (ASO) based targeting Ttbk1 could prevent the accumulation of phosphorylated tau, thereby delaying the development of tau pathology in AD. Here we show that in vivo administration of ASO targeting mouse Ttbk1 (ASO-Ttbk1) specifically suppressed the expression of Ttbk1 without affecting Ttbk2 expression in the temporal cortex of PS19 tau transgenic mice. Central administration of ASO-Ttbk1 in PS19 mice significantly reduced the expression level of representative phosphor-tau epitopes relevant to AD at 8 weeks post-dose, including pT231, pT181, and pS396 in the sarkosyl soluble and insoluble fractions isolated from hippocampal tissues as determined by ELISA and pS422 in soluble fractions as determined by western blotting. Immunofluorescence demonstrated that ASO-Ttbk1 significantly reduced pS422 phosphorylated tau intensity in mossy fibers region of the dentate gyrus in PS19 mice. RNA-sequence analysis of the temporal cortex tissue revealed significant enrichment of interferon-gamma and complement pathways and increased expression of antigen presenting molecules (Cd86, Cd74, and H2-Aa) in PS19 mice treated with ASO-Ttbk1, suggesting its potential effect on microglial phenotype although neurotoxic effect was absent. These data suggest that TTBK1 is an attractive therapeutic target to suppress TTBK1 without compromising TTBK2 expression and pathological tau phosphorylation in the early stages of AD.

Keywords