Ultrasonics Sonochemistry (May 2021)
High performance of ultrasonic-assisted synthesis of two spherical polymers for enantioselective catalysis
Abstract
Chiral polymers have aroused great attention in among chiral supramolecular materials based on their features. Herein, for the first time, the synthesis of chiral polymeric composites (CMNPs/1,4-Zbtb & 1,3-Zbtb) have been reported with entrapment through three strategies: ultrasonic irradiation, solvothermal, and mechanical stirring. According to the obtained results, it is found that ultrasound-assisted synthesis can be considered as an inexpensive and efficient method than the others, from the point of view of energy and time consuming. In this strategy, encapsulation of chiral magnetic nanoparticles (CMNPs) by using tetrazole-based polymers (Zbtbs) happens, in-situly. These chiral sphere-like inorganic–organic polymers can be considered as core and shell composites with catalytic activity due to their acidic (semi unsaturated Zn: open metal sites) and basic (abundant basic nitrogens) centers. In these structures, the unprecedented chirality induction can happen from the core to shell by non-covalent interaction, easily. They could catalyze symmetric oxidation and asymmetric henry condensation to give chiral β-nitroalkanol. Circular dichroism and chiral gas chromatography were used to characterize the produced enantiomers. These chiral polymeric materials can be considered as unique acid-base bifunctional catalysts with efficient properties such as high stability, enantiomeric excess, enantioselectivity to the main product, and protecting from CMNPs leaching.