Tumour Virus Research (Dec 2023)
Methyltransferase-independent function of enhancer of zeste homologue 2 maintains tumorigenicity induced by human oncogenic papillomavirus and polyomavirus
Abstract
Merkel cell polyomavirus (MCV) and high-risk human papillomavirus (HPV) are human tumor viruses that cause Merkel cell carcinoma (MCC) and oropharyngeal squamous cell carcinoma (OSCC), respectively. HPV E7 and MCV large T (LT) oncoproteins target the retinoblastoma tumor suppressor protein (pRb) through the conserved LxCxE motif. We identified enhancer of zeste homolog 2 (EZH2) as a common host oncoprotein activated by both viral oncoproteins through the pRb binding motif. EZH2 is a catalytic subunit of the polycomb 2 (PRC2) complex that trimethylates histone H3 at lysine 27 (H3K27me3). In MCC tissues EZH2 was highly expressed, irrespective of MCV status. Loss-of-function studies revealed that viral HPV E6/E7 and T antigen expression are required for Ezh2 mRNA expression and that EZH2 is essential for HPV(+)OSCC and MCV(+)MCC cell growth. Furthermore, EZH2 protein degraders reduced cell viability efficiently and rapidly in HPV(+)OSCC and MCV(+)MCC cells, whereas EZH2 histone methyltransferase inhibitors did not affect cell proliferation or viability within the same treatment period. These results suggest that a methyltransferase-independent function of EZH2 contributes to tumorigenesis downstream of two viral oncoproteins, and that direct targeting of EZH2 protein expression could be a promising strategy for the inhibition of tumor growth in HPV(+)OSCC and MCV(+)MCC patients.