Cellular & Molecular Biology Letters (May 2020)

Downregulation of miR-637 promotes vascular smooth muscle cell proliferation and migration via regulation of insulin-like growth factor-2

  • Ning Yang,
  • Bo Dong,
  • Yanqiu Song,
  • Yang Li,
  • Lu Kou,
  • Jingyu Yang,
  • Qin Qin

DOI
https://doi.org/10.1186/s11658-020-00222-z
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Dysregulation of the proliferation and migration of vascular smooth muscle cells (VSMCs) is a crucial cause of atherosclerosis. MiR-637 exerts an antiproliferative effect on multiple human cells. Its impact on atherosclerosis remains largely unexplored. Methods Real-time PCR was used to determine miR-637 expression in samples from atherosclerosis patients and animal models. Its expression in VSMC dysfunction models (induced by ox-LDL) was also measured. The proliferation and migration of VSMCs were respectively tested using CCK-8 and Transwell assays, and apoptosis was measured using flow cytometry. The Targetscan database was used to predict the target genes of miR-637. Interaction between miR-637 and the potential target gene was validated via real-time PCR, western blotting and a luciferase reporter assay. Results MiR-637 expression was significantly lower in atherosclerosis patient and animal model samples. It also decreased in a dose- and time-dependent manner in animal models with ox-LDL-induced atherosclerosis. Transfection with miR-637 mimics suppressed the proliferation and migration of VSMCs while promoting apoptosis, while transfection with miR-637 inhibitors had the opposite effects. We also validated that insulin-like growth factor-2 (IGF-2), a crucial factor in the pathogenesis of atherosclerosis, serves as a target gene for miR-637. Conclusion MiR-637 targeting IGF-2 contributes to atherosclerosis inhibition and could be a potential target for this disease.

Keywords