Modern Electronic Materials (Dec 2021)

Oxygen nonstoichiometry and magnetic properties of doped manganites La0.7Sr0.3Mn0.95Fe0.05O3-δ

  • Nikolay A. Kalanda,
  • Marta V. Yarmolich,
  • Alexander L. Gurskii,
  • Alexander V. Petrov,
  • Aliaksandr L. Zhaludkevich,
  • Oleg V. Ignatenko,
  • Maria Serdechnova

DOI
https://doi.org/10.3897/j.moem.7.4.80758
Journal volume & issue
Vol. 7, no. 4
pp. 141 – 149

Abstract

Read online Read online Read online

In this work, solid solutions of La0.7Sr0.3Mn0.95Fe0.05O3-δ with different oxygen content were obtained by the solid-phase reactions technique. Based on the investigation of the dynamics of changes in the oxygen index (3 – δ) during heating of the samples, the formation of a stressed state in their grains as a result of annealing was established. This results in a decrease in the mobility of oxygen vacancies during the reduction of cations according to the Mn4+ + e– → Mn3+ scheme and explains the decrease of released oxygen amount with an increase of δ as well as the heating rate of the samples. When studying the magnetic properties of the obtained samples, it was found that the temperature dependence of the magnetization obeys the Curie–Weiss law and as the oxygen defficiency increases, the Curie temperature for solid solutions decreases. It was found that the particles are in a frozen ferromagnetic state when measured in the low-temperature region of the М (Т) dependence in “zero-field mode” at Т ˂ ТВ. The presence of ferromagnetism at Т ˃ ТВ leads to a magnetically ordered state, in which the resulting magnetic moment of the magnetic particle is influenced by thermal fluctuations. When considering the temperature values of the magnetization of lanthanum-strontium manganite samples, it was found that with an increase of temperature in the low-temperature region, magnetic ordering is disturbed due to the excitation of magnons with a quadratic dependence of the energy from the wave vector, the number of which increases in proportion to T3/2. This results in a decrease in the manganite magnetization. The observed temperature dependence of the magnetization measured in the “field-cooling mode” was approximated taking into account the quadratic and non-quadratic dispersion laws of the magnon spectrum.