Frontiers in Neuroscience (Jul 2021)

Surface-Based Falff: A Potential Novel Biomarker for Prediction of Radiation Encephalopathy in Patients With Nasopharyngeal Carcinoma

  • You-ming Zhang,
  • Ya-fei Kang,
  • Jun-jie Zeng,
  • Li Li,
  • Jian-ming Gao,
  • Li-zhi Liu,
  • Liang-rong Shi,
  • Wei-hua Liao

DOI
https://doi.org/10.3389/fnins.2021.692575
Journal volume & issue
Vol. 15

Abstract

Read online

Radiation encephalopathy (RE) is an important potential complication in patients with nasopharyngeal carcinoma (NPC) who undergo radiotherapy (RT) that can affect the quality of life. However, a functional imaging biomarker of pre-symptomatic RE has not yet been established. This study aimed to assess radiation-induced gray matter functional alterations and explore fractional amplitude of low-frequency fluctuation (fALFF) as an imaging biomarker for predicting or diagnosing RE in patients with NPC. A total of 60 patients with NPC were examined, 21 in the pre-RT cohort and 39 in the post-RT cohort. Patients in the post-RT cohort were further divided into two subgroups according to the occurrence of RE in follow-up: post-RT non−RE (n = 21) and post-RT REprovedinfollow−up (n = 18). Surface-based and volume-based fALFF were used to detect radiation-induced functional alterations. Functional derived features were then adopted to construct a predictive model for the diagnosis of RE. We observed that surface-based fALFF could sensitively detect radiation-induced functional alterations in the intratemporal brain regions (such as the hippocampus and superior temporal gyrus), as well as the extratemporal regions (such as the insula and prefrontal lobe); however, no significant intergroup differences were observed using volume-based fALFF. No significant correlation between fALFF and radiation dose to the ipsilateral temporal lobe was observed. Support vector machine (SVM) analysis revealed that surface-based fALFF in the bilateral superior temporal gyri and left insula exhibited impressive performance (accuracy = 80.49%) in identifying patients likely to develop RE. We conclude that surface-based fALFF may serve as a sensitive imaging biomarker in the prediction of RE.

Keywords