Materials Today Bio (Feb 2024)

Endogenus chondrocytes immobilized by G-CSF in nanoporous gels enable repair of critical-size osteochondral defects

  • Shangkun Tang,
  • Ruinian Zhang,
  • Hanying Bai,
  • Rui Shu,
  • Danying Chen,
  • Ling He,
  • Ling Zhou,
  • Zheting Liao,
  • Mo Chen,
  • Fuxing Pei,
  • Jeremy J. Mao,
  • Xiaojun Shi

Journal volume & issue
Vol. 24
p. 100933

Abstract

Read online

Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage in vivo. However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive. Here, we first found that cells in the superficial zone of articular cartilage surrounding surgically created 3 × 1 mm defects in explant culture of adult goat and rabbit knee joints migrated into defect-filled fibrin/hylaro1nate gel, and this migration was significantly more robust upon delivery of exogenous granulocyte-colony stimulating factor (G-CSF). Remarkably, G–CSF–recruited chondrogenic progenitor cells (CPCs) showed significantly stronger migration ability than donor-matched chondrocytes and osteoblasts. G–CSF–recruited CPCs robustly differentiated into chondrocytes, modestly into osteoblasts, and barely into adipocytes. In vivo, critical-size osteochondral defects were repaired by G–CSF–recruited endogenous cells postoperatively at 6 and 12 weeks in comparison to poor healing by gel-only group or defect-only group. ICRS and O'Driscoll scores of articular cartilage were significantly higher for both 6- and 12-week G-CSF samples than corresponding gel-only and defect-only groups. Thus, endogenous stem/progenitor cells may be activated by G-CSF, a Food and Drug Administration (FDA)-cleared bone-marrow stimulating factor, to repair osteochondral defects.

Keywords