Materials & Design (Jan 2021)

Magnetoactive elastomer based on superparamagnetic nanoparticles with Curie point close to room temperature

  • Yu I. Dzhezherya,
  • Wei Xu,
  • S.V. Cherepov,
  • Yu B. Skirta,
  • V.M. Kalita,
  • A.V. Bodnaruk,
  • N.A. Liedienov,
  • A.V. Pashchenko,
  • I.V. Fesych,
  • Bingbing Liu,
  • G.G. Levchenko

Journal volume & issue
Vol. 197
p. 109281

Abstract

Read online

A magnetoactive elastomer (MAE) consisting of single-domain La0.6Ag0.2Mn1.2O3 nanoparticles with a Curie temperature close to room temperature (TC = 308 K) in a silicone matrix has been prepared and comprehensively studied. It has been found that MAE particles are magnetized superparamagnetically with a low coercivity below 10 Oe at room temperature and above. The influence of magnetic anisotropy on the appearance of torque is justified. A coupling between magnetization and magnetoelasticity has also been established. The mechanisms of the appearance of magnetoelasticity, including the effect of MAE rearrangement and MAE compression by magnetized particles, have been revealed. It has been found that the magnetoelastic properties of MAE have critical features near TC. The magnetoelastic properties of MAE disappear at T > TC and are restored at T < TC. This makes it possible to use MAE at room temperature as a smart material for devices with self-regulating magnetoelastic properties.

Keywords