Radiation Oncology (Jul 2018)

Evaluation of a new predictor of heart and left anterior descending artery dose in patients treated with adjuvant radiotherapy to the left breast

  • Lucas C. Mendez,
  • Alexander V. Louie,
  • Carolina Moreno,
  • Matt Wronski,
  • Andrew Warner,
  • Eric Leung,
  • Roberto Sakuraba,
  • Juliana K. Helito,
  • Ana Rezende,
  • Icaro T. Carvalho,
  • Eduardo Weltman

DOI
https://doi.org/10.1186/s13014-018-1069-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 6

Abstract

Read online

Abstract Background Heart-sparing techniques are time and resource intensive, although not all patients require the use of these strategies. This study evaluates the performance of different distance metrics in predicting the need for breath-hold radiotherapy in left-sided breast cancer patients receiving adjuvant radiotherapy. Methods Fifty left-sided breast cancer patients treated with breast conserving surgery and adjuvant radiotherapy to the breast from a single institution were retrospectively studied. The left breast and organs at risk were contoured in accordance to guidelines and a plan with tangents was obtained using the free-breathing CT in supine position. Heart (mean heart dose (MHD), heart V25 Gy) and left anterior descending artery dosimetry were computed and compared against distance metrics under investigation (Contact Heart, 4th Arch and 5th Arch). Recursive partitioning analysis (RPA) was used to determine optimal cut-points for distance metrics for dosimetric end points. Receiver operating characteristic curves and Pearson correlation coefficients were used to evaluate the association between distance metrics and dosimetric endpoints. Univariable and multivariable logistic regression analysis was performed to identify significant predictors of dosimetric end points. Results The mean MHD and heart V25 Gy were 2.3 Gy and 10.4 cm3, respectively. With tangents, constraints for MHD (< 1.7 Gy and V25 Gy < 10 cm3) were unattainable in 80% and 46% of patients, respectively. Optimal RPA thresholds included: Contact Heart (73 mm), 4th Arch (7 mm) and 5th Arch (41 mm). Of these, the 4th Arch had the highest overall accuracy, sensitivity, concordance index and correlation coefficient. All metrics were statistically significant predictors for MHD ≥ 1.7 Gy based on univariable logistic regression. Fifth Arch did not reach significance for heart V25 Gy ≥ 10 cm3. Fourth Arch was the only predictor to remain statistically significant after multivariable analysis. Conclusions We propose a novel “4th Arch” metric as an accurate and practical tool to determine the need for breath-hold radiotherapy for left-sided breast cancer patients undergoing adjuvant radiotherapy with standard tangents. Further validation in an external cohort is necessary.

Keywords