Frontiers in Neuroinformatics (Feb 2022)
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients
- María Tubío-Fungueiriño,
- María Tubío-Fungueiriño,
- María Tubío-Fungueiriño,
- Eva Cernadas,
- Óscar F. Gonçalves,
- Óscar F. Gonçalves,
- Cinto Segalas,
- Cinto Segalas,
- Cinto Segalas,
- Cinto Segalas,
- Sara Bertolín,
- Sara Bertolín,
- Lorea Mar-Barrutia,
- Eva Real,
- Eva Real,
- Eva Real,
- Manuel Fernández-Delgado,
- Jose M. Menchón,
- Jose M. Menchón,
- Jose M. Menchón,
- Jose M. Menchón,
- Sandra Carvalho,
- Pino Alonso,
- Pino Alonso,
- Pino Alonso,
- Pino Alonso,
- Angel Carracedo,
- Angel Carracedo,
- Angel Carracedo,
- Angel Carracedo,
- Montse Fernández-Prieto,
- Montse Fernández-Prieto,
- Montse Fernández-Prieto,
- Montse Fernández-Prieto
Affiliations
- María Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- María Tubío-Fungueiriño
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
- María Tubío-Fungueiriño
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Eva Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Óscar F. Gonçalves
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Óscar F. Gonçalves
- Department of Physical Medicine and Rehabilitation, Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital and Harvard Medical School, Boston, MA, United States
- Cinto Segalas
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Cinto Segalas
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Cinto Segalas
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Cinto Segalas
- 0CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
- Sara Bertolín
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Sara Bertolín
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Eva Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Eva Real
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Eva Real
- 0CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
- Manuel Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Jose M. Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Jose M. Menchón
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Jose M. Menchón
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Jose M. Menchón
- 0CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
- Sandra Carvalho
- 1Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Pino Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Pino Alonso
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Pino Alonso
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Pino Alonso
- 0CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
- Angel Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Angel Carracedo
- 2Genetics Group GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Angel Carracedo
- 3Grupo de Medicina Xenómica, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Angel Carracedo
- 4Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- Montse Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Montse Fernández-Prieto
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
- Montse Fernández-Prieto
- 2Genetics Group GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Montse Fernández-Prieto
- 2Genetics Group GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- DOI
- https://doi.org/10.3389/fninf.2022.807584
- Journal volume & issue
-
Vol. 16
Abstract
BackgroundMachine learning modeling can provide valuable support in different areas of mental health, because it enables to make rapid predictions and therefore support the decision making, based on valuable data. However, few studies have applied this method to predict symptoms’ worsening, based on sociodemographic, contextual, and clinical data. Thus, we applied machine learning techniques to identify predictors of symptomatologic changes in a Spanish cohort of OCD patients during the initial phase of the COVID-19 pandemic.Methods127 OCD patients were assessed using the Yale–Brown Obsessive-Compulsive Scale (Y-BOCS) and a structured clinical interview during the COVID-19 pandemic. Machine learning models for classification (LDA and SVM) and regression (linear regression and SVR) were constructed to predict each symptom based on patient’s sociodemographic, clinical and contextual information.ResultsA Y-BOCS score prediction model was generated with 100% reliability at a score threshold of ± 6. Reliability of 100% was reached for obsessions and/or compulsions related to COVID-19. Symptoms of anxiety and depression were predicted with less reliability (correlation R of 0.58 and 0.68, respectively). The suicidal thoughts are predicted with a sensitivity of 79% and specificity of 88%. The best results are achieved by SVM and SVR.ConclusionOur findings reveal that sociodemographic and clinical data can be used to predict changes in OCD symptomatology. Machine learning may be valuable tool for helping clinicians to rapidly identify patients at higher risk and therefore provide optimized care, especially in future pandemics. However, further validation of these models is required to ensure greater reliability of the algorithms for clinical implementation to specific objectives of interest.
Keywords