Frontiers in Oncology (Dec 2015)

Radiomic Machine Learning Classifiers for Prognostic Biomarkers of Head & Neck Cancer

  • Chintan eParmar,
  • Chintan eParmar,
  • Chintan eParmar,
  • Patrick eGrossmann,
  • Patrick eGrossmann,
  • Derek eRietveld,
  • Michelle M. Rietbergen,
  • Philippe eLambin,
  • Hugo J.W.L. Aerts,
  • Hugo J.W.L. Aerts

DOI
https://doi.org/10.3389/fonc.2015.00272
Journal volume & issue
Vol. 5

Abstract

Read online

Introduction: Radiomics extracts and mines large number of medical imaging features in a non-invasive and cost-effective way. The underlying assumption of radiomics is that these imaging features quantify phenotypic characteristics of entire tumor. In order to enhance applicability of radiomics in clinical oncology, highly accurate and reliable machine learning approaches are required. In this radiomic study, thirteen feature selection methods and eleven machine learning classification methods were evaluated in terms of their performance and stability for predicting overall survival in head and neck cancer patients. Methods: Two independent head and neck cancer cohorts were investigated. Training cohort HN1 consisted 101 HNSCC patients. Cohort HN2 (n=95) was used for validation. A total of 440 radiomic features were extracted from the segmented tumor regions in CT images. Feature selection and classification methods were compared using an unbiased evaluation framework. Results: We observed that the three feature selection methods MRMR (AUC = 0.69, Stability = 0.66), MIFS (AUC = 0.66, Stability = 0.69), and CIFE (AUC = 0.68, Stability = 0.7) had high prognostic performance and stability. The three classifiers BY (AUC = 0.67, RSD = 11.28), RF (AUC = 0.61, RSD = 7.36), and NN (AUC = 0.62, RSD = 10.52) also showed high prognostic performance and stability. Analysis investigating performance variability indicated that the choice of classification method is the major factor driving the performance variation (29.02% of total variance). Conclusions: Our study identified prognostic and reliable machine learning methods for the prediction of overall survival of head and neck cancer patients. Identification of optimal machine-learning methods for radiomics based prognostic analyses could broaden the scope of radiomics in precision oncology and cancer care.

Keywords