Atmosphere (Apr 2020)

A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model

  • Huoqing Li,
  • Hailiang Zhang,
  • Ali Mamtimin,
  • Shuiyong Fan,
  • Chenxiang Ju

DOI
https://doi.org/10.3390/atmos11040350
Journal volume & issue
Vol. 11, no. 4
p. 350

Abstract

Read online

The USGS (United States Geological Survey) land-use data used in the Weather Research and Forecasting (WRF) model have become obsolete as they are unable to accurately represent actual underlying surface features. Therefore, this study developed a new multi-satellite remote-sensing land-use dataset based on the latest GLC2015 (Global Land Cover, 2015) land-use data, which had 300 m spatial resolution. The new data were used to update the default USGS land-use dataset. Based on observational data from national meteorological observing stations in Xinjiang, northwest China, a comparison of the old USGS and new GLC2015 land-use datasets in the WRF model was performed for July 2018, where the simulated variables included the sensible heat flux (SHF), latent heat flux (LHF), surface skin temperature (Tsk), two-meter air temperature (T2), wind speed (Winds), specific humidity (Q2) and relative humidity (RH). The results indicated that there were significant differences between the two datasets. For example, our statistical verification results found via in situ observations made by the MET (model evaluation tools) illustrated that the bias of T2 decreased by 2.54%, the root mean square error (RMSE) decreased by 1.48%, the bias of Winds decreased by 10.46%, and the RMSE decreased by 6.77% when using the new dataset, and the new parameter values performed a net positive effect on land–atmosphere interactions. These results suggested that the GLC2015 land-use dataset developed in this study was useful in terms of improving the performance of the WRF model in the summer months.

Keywords