Heliyon (Nov 2023)

Removal and detoxification of pentahalogenated phenols using a photocatalytically induced enzymatic process

  • A. Meizler,
  • N.A. Porter,
  • F.A. Roddick

Journal volume & issue
Vol. 9, no. 11
p. e21738

Abstract

Read online

Poly-halogenated phenols generated from a range of industrial processes can find their way into rivers and ground water. Here we report on a potential treatment for reducing the toxicity of these aqueous pollutants using two highly toxic penta-halogenated phenols (pentachlorophenol (PCP) and pentabromophenol (PBP)) as surrogates. Solutions were passed through a glass column packed with a silica support fused with titanium dioxide (TiO2) and horseradish peroxidase (HRP) immobilized on its TiO2/glass surface (HRP-Tglass). TiO2 photocatalysis was activated through irradiation with UVB (320 nm) which in turn activated the HRP.Two operational flow rates (0.5 and 1.25 mL min−1; hydraulic retention times (HRTs) of 20 and 8 min, respectively), tested the effect of retention time on the extent of degradation and reduction in toxicity of the treated effluent. Microtox® was used to measure the toxicity of the substrate and its by-products at both flow rates. At the highest flow rate, dehalogenation was limited (removal of 37 % chlorine and 22 % bromine) and the toxicity of the reaction products increased. At the lowest flow rate, the longer exposure time resulted in approximately 97 % and 96 % transformation of PCP and PBP, respectively, a greater degree of dehalogenation (removal of 65 % chlorine and 70 % bromine) and a substantial decrease in toxicity of the treated solutions. The higher toxicity of effluent from the higher flow rate was attributed to the initial degradation products being more toxic than the substrates. With a longer HRT, these were then further broken down to less toxic products.Additional toxicity tests (Hydra hexactinella (Hydra) and Chinese Hamster Ovary (CHO) cell toxicity were conducted on the effluent from the lowest flow rate. Both were less sensitive than the Microtox test, with Hydra proving more sensitive than CHO.The novelty of this work is the toxicity risk assessment of the products resulting from the use of a spatially separated immobilized enzyme and photooxidation system. The system was robust and showed no decrease in treatment efficacy over 10 h.

Keywords