Scientific Reports (Sep 2023)

Predictive scale-bridging simulations through active learning

  • Satish Karra,
  • Mohamed Mehana,
  • Nicholas Lubbers,
  • Yu Chen,
  • Abdourahmane Diaw,
  • Javier E. Santos,
  • Aleksandra Pachalieva,
  • Robert S. Pavel,
  • Jeffrey R. Haack,
  • Michael McKerns,
  • Christoph Junghans,
  • Qinjun Kang,
  • Daniel Livescu,
  • Timothy C. Germann,
  • Hari S. Viswanathan

DOI
https://doi.org/10.1038/s41598-023-42823-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport in nanoporous media, critical to hydrocarbon extraction from tight shale formations, are impossible without accounting for molecular-level interactions. Similarly, inertial confinement fusion simulations rely on numerical diffusion to simulate molecular effects such as non-local transport and mixing without truly accounting for molecular interactions. With these two disparate applications in mind, we develop a novel capability which uses an active learning approach to optimize the use of local fine-scale simulations for informing coarse-scale hydrodynamics. Our approach addresses three challenges: forecasting continuum coarse-scale trajectory to speculatively execute new fine-scale molecular dynamics calculations, dynamically updating coarse-scale from fine-scale calculations, and quantifying uncertainty in neural network models.