Defence Technology (May 2024)
Bending results of graphene origami reinforced doubly curved shell
Abstract
The present work investigates higher order stress, strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper (Cu) core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads. The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature, volume fraction and folding degree. The principle of virtual work is used to derive governing equations with accounting thermal loading. The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading, graphene amount, folding degree and directional coordinate on the stress, strain and deformation responses of the structure. The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness. A verification study is presented for approving the formulation, solution methodology and numerical results.