Systems (Oct 2018)
Supporting Advances in Human-Systems Coordination through Simulation of Diverse, Distributed Expertise
Abstract
Distributed expertise task environments represent a critical, but challenging, area of team performance. As teams work together to perform complex tasks, they share much information and expertise to efficiently and effectively coordinate activities. Information coordination and alignment is affected by many factors, including communication styles and distributions of domain and interaction expertise. This study was part of a series of work performed in the authors’ lab to explore feasibility of using software simulation methods as a complement to other human factors methods to explore information alignment in teams. More specifically, this study aimed to operationalize specific parameters identified in group dynamics, management, and cognitive psychology literatures. Such research can provide an operationalized model that incorporates some of these key factors in information alignment and how these factors impact overall task performance of teams in complex environments. Simulation methods were applied to explore time-based performance outcomes. Model convergence and functionality were established through a series of model-based statistical analyses, which can be later validated with supplementary field studies. Results indicate that this style of simulation modeling is feasible, and provides directions for additional examination of factors affecting team configuration, process, and performance in complex systems.
Keywords