Energies (Jun 2014)

Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

  • Dingwei Zhu,
  • Limin Wei,
  • Biqing Wang,
  • Yujun Feng

DOI
https://doi.org/10.3390/en7063858
Journal volume & issue
Vol. 7, no. 6
pp. 3858 – 3871

Abstract

Read online

Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR) processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM) complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR) properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1). It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

Keywords