Natural Hazards and Earth System Sciences (Nov 2022)

Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy

  • A. Taramelli,
  • A. Taramelli,
  • M. Righini,
  • E. Valentini,
  • L. Alfieri,
  • I. Gatti,
  • S. Gabellani

DOI
https://doi.org/10.5194/nhess-22-3543-2022
Journal volume & issue
Vol. 22
pp. 3543 – 3569

Abstract

Read online

The vulnerability of flood-prone areas is determined by the susceptibility of the exposed assets to the hazard. It is a crucial component in risk assessment studies, both for climate change adaptation and disaster risk reduction. In this study, we analyse patterns of vulnerability for the residential sector in a frequently hit urban area of Milan, Italy. The conceptual foundation for a quantitative assessment of the structural dimensions of vulnerability is based on the modified source–pathway–receptor–consequence model. This conceptual model is used to improve the parameterization of the flood risk analysis, describing (i) hazard scenario definitions performed by hydraulic modelling based on past event data (source estimation) and morphological features and land-use evaluation (pathway estimation) and (ii) the exposure and vulnerability assessment which consists of recognizing elements potentially at risk (receptor estimation) and event losses (consequence estimation). We characterized flood hazard intensity on the basis of variability in water depth during a recent event and spatial exposure also as a function of a building's surroundings and buildings' intrinsic characteristics as a determinant vulnerability indicator of the elements at risk. In this sense the use of a geographic scale sufficient to depict spatial differences in vulnerability allowed us to identify structural vulnerability patterns to inform depth–damage curves and calculate potential losses from mesoscale (land-use level) to microscale (building level). Results produces accurate estimates of the flood characteristics, with mean error in flood depth estimation in the range 0.2–0.3 m and provide a basis to obtain site-specific damage curves and damage mapping. Findings show that the nature of flood pathways varies spatially, is influenced by landscape characteristics and alters vulnerability spatial distribution and hazard propagation. At the mesoscale, the “continuous urban fabric” Urban Atlas 2018 land-use class with the occurrence of at least 80 % of soil sealing shows higher absolute damage values. At microscale, evidence demonstrated that even events with moderate magnitude in terms of flood depth in a complex urbanized area may cause more damage than one would expect.