Advanced Nonlinear Studies (Feb 2017)

Refined Regularity of the Blow-Up Set Linked to Refined Asymptotic Behavior for the Semilinear Heat Equation

  • Ghoul Tej-Eddine,
  • Nguyen Van Tien,
  • Zaag Hatem

DOI
https://doi.org/10.1515/ans-2016-6005
Journal volume & issue
Vol. 17, no. 1
pp. 31 – 54

Abstract

Read online

We consider u⁢(x,t)${u(x,t)}$, a solution of ∂t⁡u=Δ⁢u+|u|p-1⁢u${\partial_{t}u=\Delta u+|u|^{p-1}u}$ which blows up at some time T>0${T>0}$, where u:ℝN×[0,T)→ℝ${u:\mathbb{R}^{N}\times[0,T)\to\mathbb{R}}$, p>1${p>1}$ and (N-2)⁢p0${\mu>0}$. Knowing the refined asymptotic behavior yields geometric constraints of the blow-up set, leading to more regularity on S.

Keywords