Frontiers in Bioengineering and Biotechnology (Aug 2021)

Application of Surgical Decision Model for Patients With Childhood Cataract: A Study Based on Real World Data

  • Jingjing Chen,
  • Yifan Xiang,
  • Longhui Li,
  • Andi Xu,
  • Weiling Hu,
  • Zhuoling Lin,
  • Fabao Xu,
  • Duoru Lin,
  • Weirong Chen,
  • Haotian Lin,
  • Haotian Lin

DOI
https://doi.org/10.3389/fbioe.2021.657866
Journal volume & issue
Vol. 9

Abstract

Read online

Reliable validated methods are necessary to verify the performance of diagnosis and therapy-assisted models in clinical practice. However, some validated results have research bias and may not reflect the results of real-world application. In addition, the conduct of clinical trials has executive risks for the indeterminate effectiveness of models and it is challenging to finish validated clinical trials of rare diseases. Real world data (RWD) can probably solve this problem. In our study, we collected RWD from 251 patients with a rare disease, childhood cataract (CC) and conducted a retrospective study to validate the CC surgical decision model. The consistency of the real surgical type and recommended surgical type was 94.16%. In the cataract extraction (CE) group, the model recommended the same surgical type for 84.48% of eyes, but the model advised conducting cataract extraction and primary intraocular lens implantation (CE + IOL) surgery in 15.52% of eyes, which was different from the real-world choices. In the CE + IOL group, the model recommended the same surgical type for 100% of eyes. The real-recommended matched rates were 94.22% in the eyes of bilateral patients and 90.38% in the eyes of unilateral patients. Our study is the first to apply RWD to complete a retrospective study evaluating a clinical model, and the results indicate the availability and feasibility of applying RWD in model validation and serve guidance for intelligent model evaluation for rare diseases.

Keywords