Journal of Cloud Computing: Advances, Systems and Applications (Jan 2024)
Task offloading exploiting grey wolf optimization in collaborative edge computing
Abstract
Abstract The emergence of mobile edge computing (MEC) has brought cloud services to nearby edge servers facilitating penetration of real-time and resource-consuming applications from smart mobile devices at a high rate. The problem of task offloading from mobile devices to the edge servers has been addressed in the state-of-the-art works by introducing collaboration among the MEC servers. However, their contributions are either limited by minimization of service latency or cost reduction. In this paper, we address the problem by developing a multi-objective optimization framework that jointly optimizes the latency, energy consumption, and resource usage cost. The formulated problem is proven to be an NP-hard one. Thus, we develop an evolutionary meta-heuristic solution for the offloading problem, namely WOLVERINE, based on a Binary Multi-objective Grey Wolf Optimization algorithm that achieves a feasible solution within polynomial time having computational complexity of $$O(M^3)$$ O ( M 3 ) , where M is an integer that determines the number of segments in each dimension of the objective space. Our experimental results depict that the developed WOLVERINE system achieves as high as 33.33%, 35%, and 40% performance improvements in terms of execution latency, energy, and resource cost, respectively compared to the state-of-the-art.
Keywords