APL Materials (Jul 2021)
Complementary switching in single Nb3O7(OH) nanowires
Abstract
Single nanowires and networks are considered as promising candidates for miniaturized memristive devices for brain-inspired systems. Moreover, single crystalline nanostructures are useful model systems to gain a deeper understanding in the involved switching mechanism of the investigated material. Here, we report on hydrothermally grown single crystalline Nb3O7(OH) nanowires showing a complementary resistive switching (CRS) behavior. The CRS characteristics can be related to an oxygen vacancy migration at the electrode/metal hydroxide interface. Therefore, an oxygen plasma treatment is used to reduce the oxygen vacancy content, resulting in a total reduction of the device conductivity. Furthermore, temporal resolved current–voltage measurements demonstrate the dependence of the destructive readout process of the resistance states on the voltage amplitude and polarity.