Scientific Reports (Apr 2021)

Optical characteristics of type-II hexagonal-shaped GaSb quantum dots on GaAs synthesized using nanowire self-growth mechanism from Ga metal droplet

  • Min Baik,
  • Ji-hoon Kyhm,
  • Hang-Kyu Kang,
  • Kwang-Sik Jeong,
  • Jong Su Kim,
  • Mann-Ho Cho,
  • Jin Dong Song

DOI
https://doi.org/10.1038/s41598-021-87321-9
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Abstract We report the growth mechanism and optical characteristics of type-II band-aligned GaSb quantum dots (QDs) grown on GaAs using a droplet epitaxy-driven nanowire formation mechanism with molecular beam epitaxy. Using transmission electron microscopy and scanning electron microscopy images, we confirmed that the QDs, which comprised zinc-blende crystal structures with hexagonal shapes, were successfully grown through the formation of a nanowire from a Ga droplet, with reduced strain between GaAs and GaSb. Photoluminescence (PL) peaks of GaSb capped by a GaAs layer were observed at 1.11 eV, 1.26 eV, and 1.47 eV, assigned to the QDs, a wetting-like layer (WLL), and bulk GaAs, respectively, at the measurement temperature of 14 K and excitation laser power of 30 mW. The integrated PL intensity of the QDs was significantly stronger than that of the WLL, which indicated well-grown GaSb QDs on GaAs and the generation of an interlayer exciton, as shown in the power- and temperature-dependent PL spectra, respectively. In addition, time-resolved PL data showed that the GaSb QD and GaAs layers formed a self-aligned type-II band alignment; the temperature-dependent PL data exhibited a high equivalent internal quantum efficiency of 15 ± 0.2%.