Cells (May 2023)

PAI-1 Overexpression in Valvular Interstitial Cells Contributes to Hypofibrinolysis in Aortic Stenosis

  • Magdalena Kopytek,
  • Michał Ząbczyk,
  • Piotr Mazur,
  • Anetta Undas,
  • Joanna Natorska

DOI
https://doi.org/10.3390/cells12101402
Journal volume & issue
Vol. 12, no. 10
p. 1402

Abstract

Read online

Aortic stenosis (AS) is associated with hypofibrinolysis, but its mechanism is poorly understood. We investigated whether LDL cholesterol affects plasminogen activator inhibitor 1 (PAI-1) expression, which may contribute to hypofibrinolysis in AS. Stenotic valves were obtained from 75 severe AS patients during valve replacement to assess lipids accumulation, together with PAI-1 and nuclear factor-κB (NF-κB) expression. Five control valves from autopsy healthy individuals served as controls. The expression of PAI-1 in valve interstitial cells (VICs) after LDL stimulation was assessed at protein and mRNA levels. PAI-1 activity inhibitor (TM5275) and NF-κB inhibitor (BAY 11-7082) were used to suppress PAI-1 activity or NF-κB pathway. Clot lysis time (CLT) was performed to assess fibrinolytic capacity in VICs cultures. Solely AS valves showed PAI-1 expression, the amount of which was correlated with lipid accumulation and AS severity and co-expressed with NF-κB. In vitro VICs showed abundant PAI-1 expression. LDL stimulation increased PAI-1 levels in VICs supernatants and prolonged CLT. PAI-1 activity inhibition shortened CLT, while NF-κB inhibition decreased PAI-1 and SERPINE1 expression in VICs, its level in supernatants and shortened CLT. In severe AS, valvular PAI-1 overexpression driven by lipids accumulation contributes to hypofibrinolysis and AS severity.

Keywords