Heliyon (Apr 2024)
Optimizing crop planning in the winter fallow season using residual soil nutrients and irrigation water allocation in India
Abstract
Effective management of water resources is essential for crop diversification and food security. This study proposes an Irrigation-Food-Environment-Chance-constrained Programming (IFEC) model for simultaneously optimizing crop planting area, irrigation water, and residual fertilizer considering inflow uncertainty along with farmer preference crop. Eight irrigation water allocation optimal models were constructed, fixing the preference crop cultivation area, while deviations in downstream release, and vegetable crop area cultivation were executed for sensitivity analysis. Model is then applied in a command area fed by a sub-tributary of Brahmaputra, India. On averaging, plant available N and P for the area were 62.14 kg ha−1 and 1.13 kg ha−1 respectively. With variation in available water, changes would occur in vegetable and cereal crops having higher yield and relatively less crop water requirement as compared to maize. Results showed that complying with preference crop area up to 60% would decrease the profit by 49% as compared to 20% at even 10% risk probability for 70% release. At existing conditions, water would be insufficient at 60% preference crop. Further, R2 value between benefit and water availability for vegetable cultivation varies from 0.99 to 0.78 for all scenarios. The tool featured that, setting specific preference crop areas provides equitable situation rather than mono-cropping. From the study findings, we suggest two salient recommendations: (1) promoting policies with appropriate financial subsidies for vegetable cultivation that focus on intensification with less water-requiring crops and (2) optimization results could be achieved by expanding the water utilization in the present condition while increasing efficiency.