Water (Oct 2020)

Effect of Natural Organic Matter on the Ozonation Mechanism of Trimethoprim in Water

  • Ning Zhang,
  • Beihai Zhou,
  • Rongfang Yuan,
  • Fei Wang,
  • Huilun Chen

DOI
https://doi.org/10.3390/w12102935
Journal volume & issue
Vol. 12, no. 10
p. 2935

Abstract

Read online

Trimethoprim (TMP) is often used for the treatment of various bacterial infections. It can be detected in water, and it is difficult to be biodegraded. In this study, the degradation mechanism of TMP through ozonation and the effect of humic acids (HA) were investigated. Excessive ozone (pH 6, 0 °C) could reduce the content of TMP to less than 1% in 30 s. However, when ozone (O3) was not excessive (pH 6, 20 °C), the removal efficiency of TMP increased with the increase of O3 concentration. Four possible degradation pathways of TMP in the process of ozonation were speculated: hydroxylation, demethylation, carbonylation, and cleavage. The presence of HA in water inhibit the generation of ozonation products of TMP. The excitation-emission matrices (EEM) analysis showed that with the extension of ozonation time, the fluorescence value in the solution decreased and the fluorescence peak blue shifted. These results indicated that the structure of HA changed in the reaction and was competitively degraded with TMP. According to the free radical quenching test, the products of pyrolysis, direct hydroxylation and demethylation were mainly produced by indirect oxidation.

Keywords