Sensing and Bio-Sensing Research (Dec 2024)
Overcoming challenges in plasmonic biosensors deployment for clinical and biomedical applications: A systematic review and meta-analysis
Abstract
Over recent decades, plasmonic biosensors have positioned themselves as one of the most powerful analytical tools for evaluating biomolecular interactions. This impactful analytical technology has demonstrated its value in diverse fields such as clinical diagnostics, biotechnology, pharmaceutical evaluation, disease prevention, among others. Moreover, technological advances have led to the development of miniaturized plasmonic biosensing platforms, which are small and portable for point-of-care (POC) applications. This review presents an overview of recently implemented POC-plasmonic biosensors and their use for clinical and biomedical analysis. A systematic and deep literature search in PubMed, Scopus, and Web of Science databases was performed in publications between 1 January 2018 and 30 November 2023. We excluded many publications due to the absence of real application in complex matrices or insufficient analytical information. The quality of each study was evaluated methodologically by QUADAS-2, and a meta-analysis was performed using the Cochrane RevMan software. From 1177 full-text assessments, 27 research articles were selected. The pooled sensitivity was 4.36 (95%, CI 0.19–5.97, I2 = 83%). The subgroup analysis according to the plasmonic sensors type revealed the best diagnostic odds ratio with the lowest heterogeneity: 3.81 (95% CI 0.39–39.08; I2 = 33%, p = 0.22). These findings indicate that despite plasmonic biosensors taking advantage of their miniaturization and showing promising results in portable POC devices, there are still significant obstacles to using them as routine diagnostic tools. Estimating test accuracy may help to reduce the gap between controlled laboratory conditions and real-world clinical decision-making environments.